88 research outputs found

    Antarctic subglacial hydrology: current knowledge and future challenges

    Get PDF
    AbstractFlood-carved landforms across the deglaciated terrain of Victoria Land, East Antarctica, provide convincing geomorphological evidence for the existence of subglacial drainage networks beneath the Antarctic ice sheet, and motivate research into the inaccessible environment beneath the contemporary ice sheet. Through this research, our understanding of Antarctic subglacial hydrology is steadily building, and this paper presents an overview of the current state of knowledge. The conceptualization of subglacial hydrological behaviour was developed at temperate and Arctic glaciers, and is thus less mature in the Antarctic. Geophysical and remote sensing observations have demonstrated that many subglacial lakes form part of a highly dynamic network of subglacial drainage beneath the Antarctic ice sheet. Recent research into subglacial water flows, other than those directly concerned with lakes, has discovered potentially significant impacts on ice stream dynamics, ice sheet mass balance, and supplies of water to the ocean potentially affecting circulation and nutrient productivity. Despite considerable advances in understanding there remain a number of grand challenges that must be overcome in order to improve our knowledge of these subglacial hydrological processes.</jats:p

    Dust in Interstellar Clouds, Evolved Stars and Supernovae

    Full text link
    Outflows of pre-main-sequence stars drive shocks into molecular material within 0.01 - 1 pc of the young stars. The shock-heated gas emits infrared, millimeter and submillimeter lines of many species including. Dust grains are important charge carriers and play a large role in coupling the magnetic field and flow of neutral gas. Some effects of the dust on the dynamics of oblique shocks began to emerge in the 1990s. However, detailed models of these shocks are required for the calculation of the grain sputtering contribution to gas phase abundances of species producing observed emissions. We are developing such models. Some of the molecular species introduced into the gas phase by sputtering in shocks or by thermally driven desorption in hot cores form on grain surfaces. Recently laboratory studies have begun to contribute to the understanding of surface reactions and thermally driven desorption important for the chemistry of star forming clouds. Dusty plasmas are prevalent in many evolved stars just as well as in star forming regions. Radiation pressure on dust plays a significant role in mass loss from some post-main-sequence stars. The mechanisms leading to the formation of carbonaceous dust in the stellar outflows are similar to those important for soot formation in flames. However, nucleation in oxygen-rich outflows is less well understood and remains a challenging research area. Dust is observed in supernova ejecta that have not passed through the reverse shocks that develop in the interaction of ejecta with ambient media. Dust is detected in high redshift galaxies that are sufficiently young that the only stars that could have produced the dust were so massive that they became supernovae. Consequently, the issue of the survival of dust in strong supernova shocks is of considerable interest.Comment: 4 pages, to be published in the proceedings of Fifth International Conference on Physics of Dusty Plasma

    Englacial architecture and age-depth constraints across the West Antarctic Ice Sheet

    Get PDF
    he englacial stratigraphic architecture of internal reflection horizons (IRHs) as imaged by ice‐penetrating radar (IPR) across ice sheets reflects the cumulative effects of surface mass balance, basal melt, and ice flow. IRHs, considered isochrones, have typically been traced in interior, slow‐flowing regions. Here, we identify three distinctive IRHs spanning the Institute and Möller catchments that cover 50% of West Antarctica's Weddell Sea Sector and are characterized by a complex system of ice stream tributaries. We place age constraints on IRHs through their intersections with previous geophysical surveys tied to Byrd Ice Core and by age‐depth modeling. We further show where the oldest ice likely exists within the region and that Holocene ice‐dynamic changes were limited to the catchment's lower reaches. The traced IRHs from this study have clear potential to nucleate a wider continental‐scale IRH database for validating ice sheet models

    The relationship between sticky spots and radar reflectivity beneath an active West Antarctic ice stream

    Get PDF
    Isolated areas of high basal drag, or ‘sticky spots’, are important and poorly understood features in the force balance and dynamics of West Antarctic ice streams. Characterizing sticky spots formed by thin or drying subglacial till using ice-penetrating radar is theoretically possible, as high radar bed-returned power (BRP) is commonly related to an abundance of free water at the ice/bed interface, provided losses from englacial attenuation can be estimated. In this study we use airborne radar data collected over Evans Ice Stream to extract BRP profiles and test the sensitivity of BRP to the adopted englacial attenuation correction. We analyse 11 �20km profiles in four fast-flow areas where sticky spots have been inferred to exist on the basis of model and surface data inversions. In the majority of profiles we note that the increase in basal drag is accompanied by a decrease in BRP and suggest that this is evidence both for the presence of a sticky spot in those locations and that local variations in subglacial hydrology are responsible for their existence. A comparison is made between empirical and numerical modelling approaches for deriving englacial attenuation, and our findings generally support previous studies that advocate a modelling approach

    Mass-loaded spherical accretion flows

    Get PDF
    We have calculated the evolution of spherical accretion flows undergoing mass-loading from embedded clouds through either conduction or hydrodynamical ablation. We have observed the effect of varying the ratios of the mass-loading timescale and the cooling timescale to the ballistic crossing timescale through the mass-loading region. We have also varied the ratio of the potential energy of a particle injected into the flow near the outer region of mass-loading to the temperature at which a minimum occurs in the cooling curve. The two types of mass-loading produce qualitatively different types of behaviour in the accretion flow, since mass-loading through conduction requires the ambient gas to be hot, whereas mass ablation from clumps occurs throughout the flow. Higher ratios of injected to accreted mass typically occur with hydrodynamical ablation, in agreement with previous work on wind-blown bubbles and supernova remnants. We find that mass-loading damps the radiative overstability of such flows, in agreement with our earlier work. If the mass-loading is high enough it can stabilize the accretion shock at a constant radius, yielding an almost isothermal subsonic post-shock flow. Such solutions may be relevant to cooling flows onto massive galaxies. Mass-loading can also lead to the formation of isolated shells of high temperature material, separated by gas at cooler temperatures

    Subglacial controls on the flow of Institute Ice Stream, West Antarctica

    Get PDF
    The Institute Ice Stream (IIS) rests on a reverse-sloping bed, extending >150 km upstream into the ~1.8 km deep Robin Subglacial Basin, placing it at the threshold of marine ice-sheet instability. Understanding IIS vulnerability has focused on the effect of grounding-line melting, which is forecast to increase significantly this century. Changes to ice-flow dynamics are also important to IIS stability, yet little is known about them. Here we reveal the trunk of the IIS occurs downstream of the intersection of three discrete subglacial features; a large ‘active’ subglacial lake, a newly-discovered sharp transition to a zone of weak basal sediments, and a major tectonic rift. The border of IIS trunk flow is confined by the sediment on one side, and by a transition between basal melting and freezing at the border with the Bungenstock Ice Rise. By showing how basal sediment and water dictate present-day flow of IIS, we reveal that ice-sheet stability here is dependent on this unusual arrangement

    Looking through drumlins: testing the application of ground penetrating radar

    Get PDF
    ACKNOWLEDGEMENTS We thank the editor, Bernd Kulessa, for his review and support, and John Hiemstra and an anonymous reviewer for helpful comments and suggestions. This work was supported by an equipment loan from the UK Natural Environment Research Council (NERC) Geophysical Equipment Facility (Loan 990) and a University of Aberdeen, College of Physical Sciences’ Research and Teaching Enhancement Fund. All authors are indebted to the NERC Geophysical Equipment Facility staff for training in the use of the antennas and GPS. J.C.E. thanks the Denisons for funding his PhD. We also thank Wharton Hall and Shaw Paddock farms for access to the field sites.Peer reviewedPublisher PD

    Crevasse density, orientation and temporal variability at Narsap Sermia, Greenland

    Get PDF
    Mass loss from iceberg calving at marine-terminating glaciers is one of the largest and most poorly constrained contributors to sea-level rise. However, our understanding of the processes controlling ice fracturing and crevasse evolution is incomplete. Here, we use Gabor filter banks to automatically map crevasse density and orientation through time on a ~150 km2 terminus region of Narsap Sermia, an outlet glacier of the southwest Greenland ice sheet. We find that Narsap Sermia is dominated by transverse (flow-perpendicular) crevasses near the ice front and longitudinal (flow-aligned) crevasses across its central region. Measured crevasse orientation varies on sub-annual timescales by more than 45^\circ in response to seasonal velocity changes, and also on multi-annual timescales in response to broader dynamic changes and glacier retreat. Our results show a gradual up-glacier propagation of the zone of flow-transverse crevassing coincident with frontal retreat and acceleration occurring in 2020/21, in addition to sub-annual crevasse changes primarily in transition zones between longitudinal to transverse crevasse orientation. This provides new insight into the dynamics of crevassing at large marine-terminating glaciers and a potential approach for the rapid identification of glacier dynamic change from a single pair of satellite images

    The contrasting roles of PPARδ and PPARγ in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue.

    Get PDF
    BACKGROUND: The nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and peroxisome proliferator-activated receptor δ (PPARδ) play central roles in regulating metabolism in adipose tissue, as well as being targets for the treatment of insulin resistance. While the role of PPARγ in regulating insulin sensitivity has been well defined, research into PPARδ has been limited until recently due to a scarcity of selective PPARδ agonists. RESULTS: The metabolic effects of PPARγ and PPARδ activation have been examined in vivo in white adipose tissue from ob/ob mice and in vitro in cultured 3T3-L1 adipocytes using (1)H nuclear magnetic resonance spectroscopy and mass spectrometry metabolomics to understand the receptors' contrasting roles. These steady state measurements were supplemented with (13)C-stable isotope substrate labeling to assess fluxes, in addition to respirometry and transcriptomic microarray analysis. The metabolic effects of the receptors were readily distinguished, with PPARγ activation characterized by increased fat storage, synthesis and elongation, while PPARδ activation caused increased fatty acid β-oxidation, tricarboxylic acid cycle rate and oxidation of extracellular branch chain amino acids. Stimulated glycolysis and increased fatty acid desaturation were common pathways for the agonists. CONCLUSIONS: PPARγ and PPARδ restore insulin sensitivity through varying mechanisms. PPARδ activation increases total oxidative metabolism in white adipose tissue, a tissue not traditionally thought of as oxidative. However, the increased metabolism of branch chain amino acids may provide a mechanism for muscle atrophy, which has been linked to activation of this nuclear receptor. PPARδ has a role as an anti-obesity target and as an anti-diabetic, and hence may target both the cause and consequences of dyslipidemia.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore